cl_op(lam, L0, op_dgp, cl_init, reps=10000; chart_choice, jmin=4, jmax=6, verbose=false, d=1, ced=false, ad=100)cl_op
Function to compute the control limit for ordinal patterns.
- lam::Float64: Smoothing parameter for the EWMA statistic.
- L0::Float64: In-control ARL.
- op_dgp::Union{IC, AR1, MA1, MA2, TEAR1, AAR1, QAR1}: DGP.
- cl_init::Float64: Initial guess for the control limit.
- reps::Int64: Number of replications.
- chart_choice::Int- \(\widehat{H}^{(d)}=-\sum_{k=1}^{m!} \hat{p}_k{ }^{(d)} \ln \hat{p}_k{ }^{(d)}\)
- \(\widehat{H}_{\mathrm{ex}}^{(d)}=-\sum_{k=1}^{m!}\left(1-\hat{p}_k{ }^{(d)}\right) \ln \left(1-\hat{p}_k{ }^{(d)}\right)\)
- \(\widehat{\Delta}^{(d)}=\sum_{k=1}^{m!}\left(\hat{p}_k^{(d)}-1 / m!\right)^2\)
- \(\hat{\beta}^{(d)}=\hat{p}_6^{(d)}-\hat{p}_1^{(d)}\)
- \(\hat{\tau}^{(d)}=\hat{p}_6^{(d)}+\hat{p}_1^{(d)}-\frac{1}{3}\)
- \(\hat{\delta}^{(d)}=\hat{p}_4^{(d)}+\hat{p}_5^{(d)}-\hat{p}_3^{(d)}-\hat{p}_2^{(d)}\)
 - The patterns are categorized as follows: - \(\qquad p_1 = (3,2,1); \quad p_2=(3,1,2); \quad p_3 = (2,3,1);\) - \(\qquad p_4 = (1,3,2); \quad p_5 = (2,1,3); \quad p_ 6 = (1,2,3)\) 
- jmin::IntMinimum number of decimals for final control limit to optimize.
- jmax::IntMaximum number of decimals for final control limit to optimize.
- verbose::Bool=falsePrint intermediate results?
- d::Union{Int,Vector{Int}}=1: Delay vector.
- ced::Bool=false: Use conditional expected delay? Default is false.
- ad::Int=100: Number of iterations for ced.